Subversion Repositories general

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1097 dev 1
/*-
2
 ***********************************************************************
3
 *								       *
4
 * Copyright (c) David L. Mills 1993-2001			       *
5
 *								       *
6
 * Permission to use, copy, modify, and distribute this software and   *
7
 * its documentation for any purpose and without fee is hereby	       *
8
 * granted, provided that the above copyright notice appears in all    *
9
 * copies and that both the copyright notice and this permission       *
10
 * notice appear in supporting documentation, and that the name	       *
11
 * University of Delaware not be used in advertising or publicity      *
12
 * pertaining to distribution of the software without specific,	       *
13
 * written prior permission. The University of Delaware makes no       *
14
 * representations about the suitability this software for any	       *
15
 * purpose. It is provided "as is" without express or implied	       *
16
 * warranty.							       *
17
 *								       *
18
 **********************************************************************/
19
 
20
/*
21
 * Adapted from the original sources for FreeBSD and timecounters by:
22
 * Poul-Henning Kamp <phk@FreeBSD.org>.
23
 *
24
 * The 32bit version of the "LP" macros seems a bit past its "sell by" 
25
 * date so I have retained only the 64bit version and included it directly
26
 * in this file.
27
 *
28
 * Only minor changes done to interface with the timecounters over in
29
 * sys/kern/kern_clock.c.   Some of the comments below may be (even more)
30
 * confusing and/or plain wrong in that context.
31
 */
32
 
33
#include <sys/cdefs.h>
34
__FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $");
35
 
36
#include "opt_ntp.h"
37
 
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/sysproto.h>
41
#include <sys/jail.h>
42
#include <sys/kernel.h>
43
#include <sys/proc.h>
44
#include <sys/lock.h>
45
#include <sys/mutex.h>
46
#include <sys/time.h>
47
#include <sys/timex.h>
48
#include <sys/timetc.h>
49
#include <sys/timepps.h>
50
#include <sys/syscallsubr.h>
51
#include <sys/sysctl.h>
52
 
53
/*
54
 * Single-precision macros for 64-bit machines
55
 */
56
typedef int64_t l_fp;
57
#define L_ADD(v, u)	((v) += (u))
58
#define L_SUB(v, u)	((v) -= (u))
59
#define L_ADDHI(v, a)	((v) += (int64_t)(a) << 32)
60
#define L_NEG(v)	((v) = -(v))
61
#define L_RSHIFT(v, n) \
62
	do { \
63
		if ((v) < 0) \
64
			(v) = -(-(v) >> (n)); \
65
		else \
66
			(v) = (v) >> (n); \
67
	} while (0)
68
#define L_MPY(v, a)	((v) *= (a))
69
#define L_CLR(v)	((v) = 0)
70
#define L_ISNEG(v)	((v) < 0)
71
#define L_LINT(v, a)	((v) = (int64_t)(a) << 32)
72
#define L_GINT(v)	((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
73
 
74
/*
75
 * Generic NTP kernel interface
76
 *
77
 * These routines constitute the Network Time Protocol (NTP) interfaces
78
 * for user and daemon application programs. The ntp_gettime() routine
79
 * provides the time, maximum error (synch distance) and estimated error
80
 * (dispersion) to client user application programs. The ntp_adjtime()
81
 * routine is used by the NTP daemon to adjust the system clock to an
82
 * externally derived time. The time offset and related variables set by
83
 * this routine are used by other routines in this module to adjust the
84
 * phase and frequency of the clock discipline loop which controls the
85
 * system clock.
86
 *
87
 * When the kernel time is reckoned directly in nanoseconds (NTP_NANO
88
 * defined), the time at each tick interrupt is derived directly from
89
 * the kernel time variable. When the kernel time is reckoned in
90
 * microseconds, (NTP_NANO undefined), the time is derived from the
91
 * kernel time variable together with a variable representing the
92
 * leftover nanoseconds at the last tick interrupt. In either case, the
93
 * current nanosecond time is reckoned from these values plus an
94
 * interpolated value derived by the clock routines in another
95
 * architecture-specific module. The interpolation can use either a
96
 * dedicated counter or a processor cycle counter (PCC) implemented in
97
 * some architectures.
98
 *
99
 * Note that all routines must run at priority splclock or higher.
100
 */
101
/*
102
 * Phase/frequency-lock loop (PLL/FLL) definitions
103
 *
104
 * The nanosecond clock discipline uses two variable types, time
105
 * variables and frequency variables. Both types are represented as 64-
106
 * bit fixed-point quantities with the decimal point between two 32-bit
107
 * halves. On a 32-bit machine, each half is represented as a single
108
 * word and mathematical operations are done using multiple-precision
109
 * arithmetic. On a 64-bit machine, ordinary computer arithmetic is
110
 * used.
111
 *
112
 * A time variable is a signed 64-bit fixed-point number in ns and
113
 * fraction. It represents the remaining time offset to be amortized
114
 * over succeeding tick interrupts. The maximum time offset is about
115
 * 0.5 s and the resolution is about 2.3e-10 ns.
116
 *
117
 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
118
 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
119
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
120
 * |s s s|			 ns				   |
121
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
122
 * |			    fraction				   |
123
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
124
 *
125
 * A frequency variable is a signed 64-bit fixed-point number in ns/s
126
 * and fraction. It represents the ns and fraction to be added to the
127
 * kernel time variable at each second. The maximum frequency offset is
128
 * about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
129
 *
130
 *			1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
131
 *  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
132
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
133
 * |s s s s s s s s s s s s s|	          ns/s			   |
134
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
135
 * |			    fraction				   |
136
 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
137
 */
138
/*
139
 * The following variables establish the state of the PLL/FLL and the
140
 * residual time and frequency offset of the local clock.
141
 */
142
#define SHIFT_PLL	4		/* PLL loop gain (shift) */
143
#define SHIFT_FLL	2		/* FLL loop gain (shift) */
144
 
145
static int time_state = TIME_OK;	/* clock state */
146
static int time_status = STA_UNSYNC;	/* clock status bits */
147
static long time_tai;			/* TAI offset (s) */
148
static long time_monitor;		/* last time offset scaled (ns) */
149
static long time_constant;		/* poll interval (shift) (s) */
150
static long time_precision = 1;		/* clock precision (ns) */
151
static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
152
static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
153
static long time_reftime;		/* time at last adjustment (s) */
154
static l_fp time_offset;		/* time offset (ns) */
155
static l_fp time_freq;			/* frequency offset (ns/s) */
156
static l_fp time_adj;			/* tick adjust (ns/s) */
157
 
158
static int64_t time_adjtime;		/* correction from adjtime(2) (usec) */
159
 
160
#ifdef PPS_SYNC
161
/*
162
 * The following variables are used when a pulse-per-second (PPS) signal
163
 * is available and connected via a modem control lead. They establish
164
 * the engineering parameters of the clock discipline loop when
165
 * controlled by the PPS signal.
166
 */
167
#define PPS_FAVG	2		/* min freq avg interval (s) (shift) */
168
#define PPS_FAVGDEF	8		/* default freq avg int (s) (shift) */
169
#define PPS_FAVGMAX	15		/* max freq avg interval (s) (shift) */
170
#define PPS_PAVG	4		/* phase avg interval (s) (shift) */
171
#define PPS_VALID	120		/* PPS signal watchdog max (s) */
172
#define PPS_MAXWANDER	100000		/* max PPS wander (ns/s) */
173
#define PPS_POPCORN	2		/* popcorn spike threshold (shift) */
174
 
175
static struct timespec pps_tf[3];	/* phase median filter */
176
static l_fp pps_freq;			/* scaled frequency offset (ns/s) */
177
static long pps_fcount;			/* frequency accumulator */
178
static long pps_jitter;			/* nominal jitter (ns) */
179
static long pps_stabil;			/* nominal stability (scaled ns/s) */
180
static long pps_lastsec;		/* time at last calibration (s) */
181
static int pps_valid;			/* signal watchdog counter */
182
static int pps_shift = PPS_FAVG;	/* interval duration (s) (shift) */
183
static int pps_shiftmax = PPS_FAVGDEF;	/* max interval duration (s) (shift) */
184
static int pps_intcnt;			/* wander counter */
185
 
186
/*
187
 * PPS signal quality monitors
188
 */
189
static long pps_calcnt;			/* calibration intervals */
190
static long pps_jitcnt;			/* jitter limit exceeded */
191
static long pps_stbcnt;			/* stability limit exceeded */
192
static long pps_errcnt;			/* calibration errors */
193
#endif /* PPS_SYNC */
194
/*
195
 * End of phase/frequency-lock loop (PLL/FLL) definitions
196
 */
197
 
198
static void ntp_init(void);
199
static void hardupdate(long offset);
200
static void ntp_gettime1(struct ntptimeval *ntvp);
201
 
202
static int cf_useradjtime;
203
static int cf_jailadjtime;
204
SYSCTL_INT(_kern, OID_AUTO, useradjtime, CTLFLAG_RW, &cf_useradjtime, 0,
205
    "Non-root is allowed to adjust system time");
206
SYSCTL_INT(_kern, OID_AUTO, jailadjtime, CTLFLAG_RW, &cf_jailadjtime, 0,
207
    "System time is allowed to be adjusted from jail");
208
 
209
static void
210
ntp_gettime1(struct ntptimeval *ntvp)
211
{
212
	struct timespec atv;	/* nanosecond time */
213
 
214
	GIANT_REQUIRED;
215
 
216
	nanotime(&atv);
217
	ntvp->time.tv_sec = atv.tv_sec;
218
	ntvp->time.tv_nsec = atv.tv_nsec;
219
	ntvp->maxerror = time_maxerror;
220
	ntvp->esterror = time_esterror;
221
	ntvp->tai = time_tai;
222
	ntvp->time_state = time_state;
223
 
224
	/*
225
	 * Status word error decode. If any of these conditions occur,
226
	 * an error is returned, instead of the status word. Most
227
	 * applications will care only about the fact the system clock
228
	 * may not be trusted, not about the details.
229
	 *
230
	 * Hardware or software error
231
	 */
232
	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
233
 
234
	/*
235
	 * PPS signal lost when either time or frequency synchronization
236
	 * requested
237
	 */
238
	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
239
	    !(time_status & STA_PPSSIGNAL)) ||
240
 
241
	/*
242
	 * PPS jitter exceeded when time synchronization requested
243
	 */
244
	    (time_status & STA_PPSTIME &&
245
	    time_status & STA_PPSJITTER) ||
246
 
247
	/*
248
	 * PPS wander exceeded or calibration error when frequency
249
	 * synchronization requested
250
	 */
251
	    (time_status & STA_PPSFREQ &&
252
	    time_status & (STA_PPSWANDER | STA_PPSERROR)))
253
		ntvp->time_state = TIME_ERROR;
254
}
255
 
256
/*
257
 * ntp_gettime() - NTP user application interface
258
 *
259
 * See the timex.h header file for synopsis and API description. Note
260
 * that the TAI offset is returned in the ntvtimeval.tai structure
261
 * member.
262
 */
263
#ifndef _SYS_SYSPROTO_H_
264
struct ntp_gettime_args {
265
	struct ntptimeval *ntvp;
266
};
267
#endif
268
/* ARGSUSED */
269
int
270
ntp_gettime(struct thread *td, struct ntp_gettime_args *uap)
271
{	
272
	struct ntptimeval ntv;
273
 
274
	mtx_lock(&Giant);
275
	ntp_gettime1(&ntv);
276
	mtx_unlock(&Giant);
277
 
278
	return (copyout(&ntv, uap->ntvp, sizeof(ntv)));
279
}
280
 
281
static int
282
ntp_sysctl(SYSCTL_HANDLER_ARGS)
283
{
284
	struct ntptimeval ntv;	/* temporary structure */
285
 
286
	ntp_gettime1(&ntv);
287
 
288
	return (sysctl_handle_opaque(oidp, &ntv, sizeof(ntv), req));
289
}
290
 
291
SYSCTL_NODE(_kern, OID_AUTO, ntp_pll, CTLFLAG_RW, 0, "");
292
SYSCTL_PROC(_kern_ntp_pll, OID_AUTO, gettime, CTLTYPE_OPAQUE|CTLFLAG_RD,
293
	0, sizeof(struct ntptimeval) , ntp_sysctl, "S,ntptimeval", "");
294
 
295
#ifdef PPS_SYNC
296
SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shiftmax, CTLFLAG_RW, &pps_shiftmax, 0, "");
297
SYSCTL_INT(_kern_ntp_pll, OID_AUTO, pps_shift, CTLFLAG_RW, &pps_shift, 0, "");
298
SYSCTL_INT(_kern_ntp_pll, OID_AUTO, time_monitor, CTLFLAG_RD, &time_monitor, 0, "");
299
 
300
SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, pps_freq, CTLFLAG_RD, &pps_freq, sizeof(pps_freq), "I", "");
301
SYSCTL_OPAQUE(_kern_ntp_pll, OID_AUTO, time_freq, CTLFLAG_RD, &time_freq, sizeof(time_freq), "I", "");
302
#endif
303
/*
304
 * ntp_adjtime() - NTP daemon application interface
305
 *
306
 * See the timex.h header file for synopsis and API description. Note
307
 * that the timex.constant structure member has a dual purpose to set
308
 * the time constant and to set the TAI offset.
309
 */
310
#ifndef _SYS_SYSPROTO_H_
311
struct ntp_adjtime_args {
312
	struct timex *tp;
313
};
314
#endif
315
 
316
/*
317
 * MPSAFE
318
 */
319
int
320
ntp_adjtime(struct thread *td, struct ntp_adjtime_args *uap)
321
{
322
	struct timex ntv;	/* temporary structure */
323
	long freq;		/* frequency ns/s) */
324
	int modes;		/* mode bits from structure */
325
	int s;			/* caller priority */
326
	int error;
327
 
328
	error = copyin((caddr_t)uap->tp, (caddr_t)&ntv, sizeof(ntv));
329
	if (error)
330
		return(error);
331
 
332
	/*
333
	 * Update selected clock variables - only the superuser can
334
	 * change anything. Note that there is no error checking here on
335
	 * the assumption the superuser should know what it is doing.
336
	 * Note that either the time constant or TAI offset are loaded
337
	 * from the ntv.constant member, depending on the mode bits. If
338
	 * the STA_PLL bit in the status word is cleared, the state and
339
	 * status words are reset to the initial values at boot.
340
	 */
341
	mtx_lock(&Giant);
342
	modes = ntv.modes;
343
	if (modes) {  /* XXX really check suser sometimes only? */
344
#ifdef MAC
345
		error = mac_check_system_settime(td->td_ucred);
346
		if (error)
347
			goto done2;
348
#endif
349
		if (!cf_jailadjtime && jailed(td->td_ucred)) {
350
			error = EPERM;
351
			goto done2;
352
		}
353
		if (!cf_useradjtime && 
354
		    (error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL)) != 0)
355
			goto done2;            /* jail is already checked at this point */
356
	}
357
	s = splclock();
358
	if (modes & MOD_MAXERROR)
359
		time_maxerror = ntv.maxerror;
360
	if (modes & MOD_ESTERROR)
361
		time_esterror = ntv.esterror;
362
	if (modes & MOD_STATUS) {
363
		if (time_status & STA_PLL && !(ntv.status & STA_PLL)) {
364
			time_state = TIME_OK;
365
			time_status = STA_UNSYNC;
366
#ifdef PPS_SYNC
367
			pps_shift = PPS_FAVG;
368
#endif /* PPS_SYNC */
369
		}
370
		time_status &= STA_RONLY;
371
		time_status |= ntv.status & ~STA_RONLY;
372
	}
373
	if (modes & MOD_TIMECONST) {
374
		if (ntv.constant < 0)
375
			time_constant = 0;
376
		else if (ntv.constant > MAXTC)
377
			time_constant = MAXTC;
378
		else
379
			time_constant = ntv.constant;
380
	}
381
	if (modes & MOD_TAI) {
382
		if (ntv.constant > 0) /* XXX zero & negative numbers ? */
383
			time_tai = ntv.constant;
384
	}
385
#ifdef PPS_SYNC
386
	if (modes & MOD_PPSMAX) {
387
		if (ntv.shift < PPS_FAVG)
388
			pps_shiftmax = PPS_FAVG;
389
		else if (ntv.shift > PPS_FAVGMAX)
390
			pps_shiftmax = PPS_FAVGMAX;
391
		else
392
			pps_shiftmax = ntv.shift;
393
	}
394
#endif /* PPS_SYNC */
395
	if (modes & MOD_NANO)
396
		time_status |= STA_NANO;
397
	if (modes & MOD_MICRO)
398
		time_status &= ~STA_NANO;
399
	if (modes & MOD_CLKB)
400
		time_status |= STA_CLK;
401
	if (modes & MOD_CLKA)
402
		time_status &= ~STA_CLK;
403
	if (modes & MOD_FREQUENCY) {
404
		freq = (ntv.freq * 1000LL) >> 16;
405
		if (freq > MAXFREQ)
406
			L_LINT(time_freq, MAXFREQ);
407
		else if (freq < -MAXFREQ)
408
			L_LINT(time_freq, -MAXFREQ);
409
		else {
410
			/*
411
			 * ntv.freq is [PPM * 2^16] = [us/s * 2^16]
412
			 * time_freq is [ns/s * 2^32]
413
			 */
414
			time_freq = ntv.freq * 1000LL * 65536LL;
415
		}
416
#ifdef PPS_SYNC
417
		pps_freq = time_freq;
418
#endif /* PPS_SYNC */
419
	}
420
	if (modes & MOD_OFFSET) {
421
		if (time_status & STA_NANO)
422
			hardupdate(ntv.offset);
423
		else
424
			hardupdate(ntv.offset * 1000);
425
	}
426
 
427
	/*
428
	 * Retrieve all clock variables. Note that the TAI offset is
429
	 * returned only by ntp_gettime();
430
	 */
431
	if (time_status & STA_NANO)
432
		ntv.offset = L_GINT(time_offset);
433
	else
434
		ntv.offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
435
	ntv.freq = L_GINT((time_freq / 1000LL) << 16);
436
	ntv.maxerror = time_maxerror;
437
	ntv.esterror = time_esterror;
438
	ntv.status = time_status;
439
	ntv.constant = time_constant;
440
	if (time_status & STA_NANO)
441
		ntv.precision = time_precision;
442
	else
443
		ntv.precision = time_precision / 1000;
444
	ntv.tolerance = MAXFREQ * SCALE_PPM;
445
#ifdef PPS_SYNC
446
	ntv.shift = pps_shift;
447
	ntv.ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
448
	if (time_status & STA_NANO)
449
		ntv.jitter = pps_jitter;
450
	else
451
		ntv.jitter = pps_jitter / 1000;
452
	ntv.stabil = pps_stabil;
453
	ntv.calcnt = pps_calcnt;
454
	ntv.errcnt = pps_errcnt;
455
	ntv.jitcnt = pps_jitcnt;
456
	ntv.stbcnt = pps_stbcnt;
457
#endif /* PPS_SYNC */
458
	splx(s);
459
 
460
	error = copyout((caddr_t)&ntv, (caddr_t)uap->tp, sizeof(ntv));
461
	if (error)
462
		goto done2;
463
 
464
	/*
465
	 * Status word error decode. See comments in
466
	 * ntp_gettime() routine.
467
	 */
468
	if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
469
	    (time_status & (STA_PPSFREQ | STA_PPSTIME) &&
470
	    !(time_status & STA_PPSSIGNAL)) ||
471
	    (time_status & STA_PPSTIME &&
472
	    time_status & STA_PPSJITTER) ||
473
	    (time_status & STA_PPSFREQ &&
474
	    time_status & (STA_PPSWANDER | STA_PPSERROR))) {
475
		td->td_retval[0] = TIME_ERROR;
476
	} else {
477
		td->td_retval[0] = time_state;
478
	}
479
done2:
480
	mtx_unlock(&Giant);
481
	return (error);
482
}
483
 
484
/*
485
 * second_overflow() - called after ntp_tick_adjust()
486
 *
487
 * This routine is ordinarily called immediately following the above
488
 * routine ntp_tick_adjust(). While these two routines are normally
489
 * combined, they are separated here only for the purposes of
490
 * simulation.
491
 */
492
void
493
ntp_update_second(int64_t *adjustment, time_t *newsec)
494
{
495
	int tickrate;
496
	l_fp ftemp;		/* 32/64-bit temporary */
497
 
498
	/*
499
	 * On rollover of the second both the nanosecond and microsecond
500
	 * clocks are updated and the state machine cranked as
501
	 * necessary. The phase adjustment to be used for the next
502
	 * second is calculated and the maximum error is increased by
503
	 * the tolerance.
504
	 */
505
	time_maxerror += MAXFREQ / 1000;
506
 
507
	/*
508
	 * Leap second processing. If in leap-insert state at
509
	 * the end of the day, the system clock is set back one
510
	 * second; if in leap-delete state, the system clock is
511
	 * set ahead one second. The nano_time() routine or
512
	 * external clock driver will insure that reported time
513
	 * is always monotonic.
514
	 */
515
	switch (time_state) {
516
 
517
		/*
518
		 * No warning.
519
		 */
520
		case TIME_OK:
521
		if (time_status & STA_INS)
522
			time_state = TIME_INS;
523
		else if (time_status & STA_DEL)
524
			time_state = TIME_DEL;
525
		break;
526
 
527
		/*
528
		 * Insert second 23:59:60 following second
529
		 * 23:59:59.
530
		 */
531
		case TIME_INS:
532
		if (!(time_status & STA_INS))
533
			time_state = TIME_OK;
534
		else if ((*newsec) % 86400 == 0) {
535
			(*newsec)--;
536
			time_state = TIME_OOP;
537
			time_tai++;
538
		}
539
		break;
540
 
541
		/*
542
		 * Delete second 23:59:59.
543
		 */
544
		case TIME_DEL:
545
		if (!(time_status & STA_DEL))
546
			time_state = TIME_OK;
547
		else if (((*newsec) + 1) % 86400 == 0) {
548
			(*newsec)++;
549
			time_tai--;
550
			time_state = TIME_WAIT;
551
		}
552
		break;
553
 
554
		/*
555
		 * Insert second in progress.
556
		 */
557
		case TIME_OOP:
558
			time_state = TIME_WAIT;
559
		break;
560
 
561
		/*
562
		 * Wait for status bits to clear.
563
		 */
564
		case TIME_WAIT:
565
		if (!(time_status & (STA_INS | STA_DEL)))
566
			time_state = TIME_OK;
567
	}
568
 
569
	/*
570
	 * Compute the total time adjustment for the next second
571
	 * in ns. The offset is reduced by a factor depending on
572
	 * whether the PPS signal is operating. Note that the
573
	 * value is in effect scaled by the clock frequency,
574
	 * since the adjustment is added at each tick interrupt.
575
	 */
576
	ftemp = time_offset;
577
#ifdef PPS_SYNC
578
	/* XXX even if PPS signal dies we should finish adjustment ? */
579
	if (time_status & STA_PPSTIME && time_status &
580
	    STA_PPSSIGNAL)
581
		L_RSHIFT(ftemp, pps_shift);
582
	else
583
		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
584
#else
585
		L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
586
#endif /* PPS_SYNC */
587
	time_adj = ftemp;
588
	L_SUB(time_offset, ftemp);
589
	L_ADD(time_adj, time_freq);
590
 
591
	/*
592
	 * Apply any correction from adjtime(2).  If more than one second
593
	 * off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
594
	 * until the last second is slewed the final < 500 usecs.
595
	 */
596
	if (time_adjtime != 0) {
597
		if (time_adjtime > 1000000)
598
			tickrate = 5000;
599
		else if (time_adjtime < -1000000)
600
			tickrate = -5000;
601
		else if (time_adjtime > 500)
602
			tickrate = 500;
603
		else if (time_adjtime < -500)
604
			tickrate = -500;
605
		else
606
			tickrate = time_adjtime;
607
		time_adjtime -= tickrate;
608
		L_LINT(ftemp, tickrate * 1000);
609
		L_ADD(time_adj, ftemp);
610
	}
611
	*adjustment = time_adj;
612
 
613
#ifdef PPS_SYNC
614
	if (pps_valid > 0)
615
		pps_valid--;
616
	else
617
		time_status &= ~STA_PPSSIGNAL;
618
#endif /* PPS_SYNC */
619
}
620
 
621
/*
622
 * ntp_init() - initialize variables and structures
623
 *
624
 * This routine must be called after the kernel variables hz and tick
625
 * are set or changed and before the next tick interrupt. In this
626
 * particular implementation, these values are assumed set elsewhere in
627
 * the kernel. The design allows the clock frequency and tick interval
628
 * to be changed while the system is running. So, this routine should
629
 * probably be integrated with the code that does that.
630
 */
631
static void
632
ntp_init()
633
{
634
 
635
	/*
636
	 * The following variables are initialized only at startup. Only
637
	 * those structures not cleared by the compiler need to be
638
	 * initialized, and these only in the simulator. In the actual
639
	 * kernel, any nonzero values here will quickly evaporate.
640
	 */
641
	L_CLR(time_offset);
642
	L_CLR(time_freq);
643
#ifdef PPS_SYNC
644
	pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
645
	pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
646
	pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
647
	pps_fcount = 0;
648
	L_CLR(pps_freq);
649
#endif /* PPS_SYNC */	   
650
}
651
 
652
SYSINIT(ntpclocks, SI_SUB_CLOCKS, SI_ORDER_MIDDLE, ntp_init, NULL)
653
 
654
/*
655
 * hardupdate() - local clock update
656
 *
657
 * This routine is called by ntp_adjtime() to update the local clock
658
 * phase and frequency. The implementation is of an adaptive-parameter,
659
 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
660
 * time and frequency offset estimates for each call. If the kernel PPS
661
 * discipline code is configured (PPS_SYNC), the PPS signal itself
662
 * determines the new time offset, instead of the calling argument.
663
 * Presumably, calls to ntp_adjtime() occur only when the caller
664
 * believes the local clock is valid within some bound (+-128 ms with
665
 * NTP). If the caller's time is far different than the PPS time, an
666
 * argument will ensue, and it's not clear who will lose.
667
 *
668
 * For uncompensated quartz crystal oscillators and nominal update
669
 * intervals less than 256 s, operation should be in phase-lock mode,
670
 * where the loop is disciplined to phase. For update intervals greater
671
 * than 1024 s, operation should be in frequency-lock mode, where the
672
 * loop is disciplined to frequency. Between 256 s and 1024 s, the mode
673
 * is selected by the STA_MODE status bit.
674
 */
675
static void
676
hardupdate(offset)
677
	long offset;		/* clock offset (ns) */
678
{
679
	long mtemp;
680
	l_fp ftemp;
681
 
682
	/*
683
	 * Select how the phase is to be controlled and from which
684
	 * source. If the PPS signal is present and enabled to
685
	 * discipline the time, the PPS offset is used; otherwise, the
686
	 * argument offset is used.
687
	 */
688
	if (!(time_status & STA_PLL))
689
		return;
690
	if (!(time_status & STA_PPSTIME && time_status &
691
	    STA_PPSSIGNAL)) {
692
		if (offset > MAXPHASE)
693
			time_monitor = MAXPHASE;
694
		else if (offset < -MAXPHASE)
695
			time_monitor = -MAXPHASE;
696
		else
697
			time_monitor = offset;
698
		L_LINT(time_offset, time_monitor);
699
	}
700
 
701
	/*
702
	 * Select how the frequency is to be controlled and in which
703
	 * mode (PLL or FLL). If the PPS signal is present and enabled
704
	 * to discipline the frequency, the PPS frequency is used;
705
	 * otherwise, the argument offset is used to compute it.
706
	 */
707
	if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
708
		time_reftime = time_second;
709
		return;
710
	}
711
	if (time_status & STA_FREQHOLD || time_reftime == 0)
712
		time_reftime = time_second;
713
	mtemp = time_second - time_reftime;
714
	L_LINT(ftemp, time_monitor);
715
	L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
716
	L_MPY(ftemp, mtemp);
717
	L_ADD(time_freq, ftemp);
718
	time_status &= ~STA_MODE;
719
	if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
720
	    MAXSEC)) {
721
		L_LINT(ftemp, (time_monitor << 4) / mtemp);
722
		L_RSHIFT(ftemp, SHIFT_FLL + 4);
723
		L_ADD(time_freq, ftemp);
724
		time_status |= STA_MODE;
725
	}
726
	time_reftime = time_second;
727
	if (L_GINT(time_freq) > MAXFREQ)
728
		L_LINT(time_freq, MAXFREQ);
729
	else if (L_GINT(time_freq) < -MAXFREQ)
730
		L_LINT(time_freq, -MAXFREQ);
731
}
732
 
733
#ifdef PPS_SYNC
734
/*
735
 * hardpps() - discipline CPU clock oscillator to external PPS signal
736
 *
737
 * This routine is called at each PPS interrupt in order to discipline
738
 * the CPU clock oscillator to the PPS signal. There are two independent
739
 * first-order feedback loops, one for the phase, the other for the
740
 * frequency. The phase loop measures and grooms the PPS phase offset
741
 * and leaves it in a handy spot for the seconds overflow routine. The
742
 * frequency loop averages successive PPS phase differences and
743
 * calculates the PPS frequency offset, which is also processed by the
744
 * seconds overflow routine. The code requires the caller to capture the
745
 * time and architecture-dependent hardware counter values in
746
 * nanoseconds at the on-time PPS signal transition.
747
 *
748
 * Note that, on some Unix systems this routine runs at an interrupt
749
 * priority level higher than the timer interrupt routine hardclock().
750
 * Therefore, the variables used are distinct from the hardclock()
751
 * variables, except for the actual time and frequency variables, which
752
 * are determined by this routine and updated atomically.
753
 */
754
void
755
hardpps(tsp, nsec)
756
	struct timespec *tsp;	/* time at PPS */
757
	long nsec;		/* hardware counter at PPS */
758
{
759
	long u_sec, u_nsec, v_nsec; /* temps */
760
	l_fp ftemp;
761
 
762
	/*
763
	 * The signal is first processed by a range gate and frequency
764
	 * discriminator. The range gate rejects noise spikes outside
765
	 * the range +-500 us. The frequency discriminator rejects input
766
	 * signals with apparent frequency outside the range 1 +-500
767
	 * PPM. If two hits occur in the same second, we ignore the
768
	 * later hit; if not and a hit occurs outside the range gate,
769
	 * keep the later hit for later comparison, but do not process
770
	 * it.
771
	 */
772
	time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
773
	time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
774
	pps_valid = PPS_VALID;
775
	u_sec = tsp->tv_sec;
776
	u_nsec = tsp->tv_nsec;
777
	if (u_nsec >= (NANOSECOND >> 1)) {
778
		u_nsec -= NANOSECOND;
779
		u_sec++;
780
	}
781
	v_nsec = u_nsec - pps_tf[0].tv_nsec;
782
	if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
783
	    MAXFREQ)
784
		return;
785
	pps_tf[2] = pps_tf[1];
786
	pps_tf[1] = pps_tf[0];
787
	pps_tf[0].tv_sec = u_sec;
788
	pps_tf[0].tv_nsec = u_nsec;
789
 
790
	/*
791
	 * Compute the difference between the current and previous
792
	 * counter values. If the difference exceeds 0.5 s, assume it
793
	 * has wrapped around, so correct 1.0 s. If the result exceeds
794
	 * the tick interval, the sample point has crossed a tick
795
	 * boundary during the last second, so correct the tick. Very
796
	 * intricate.
797
	 */
798
	u_nsec = nsec;
799
	if (u_nsec > (NANOSECOND >> 1))
800
		u_nsec -= NANOSECOND;
801
	else if (u_nsec < -(NANOSECOND >> 1))
802
		u_nsec += NANOSECOND;
803
	pps_fcount += u_nsec;
804
	if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
805
		return;
806
	time_status &= ~STA_PPSJITTER;
807
 
808
	/*
809
	 * A three-stage median filter is used to help denoise the PPS
810
	 * time. The median sample becomes the time offset estimate; the
811
	 * difference between the other two samples becomes the time
812
	 * dispersion (jitter) estimate.
813
	 */
814
	if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
815
		if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
816
			v_nsec = pps_tf[1].tv_nsec;	/* 0 1 2 */
817
			u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
818
		} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
819
			v_nsec = pps_tf[0].tv_nsec;	/* 2 0 1 */
820
			u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
821
		} else {
822
			v_nsec = pps_tf[2].tv_nsec;	/* 0 2 1 */
823
			u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
824
		}
825
	} else {
826
		if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
827
			v_nsec = pps_tf[1].tv_nsec;	/* 2 1 0 */
828
			u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
829
		} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
830
			v_nsec = pps_tf[0].tv_nsec;	/* 1 0 2 */
831
			u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
832
		} else {
833
			v_nsec = pps_tf[2].tv_nsec;	/* 1 2 0 */
834
			u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
835
		}
836
	}
837
 
838
	/*
839
	 * Nominal jitter is due to PPS signal noise and interrupt
840
	 * latency. If it exceeds the popcorn threshold, the sample is
841
	 * discarded. otherwise, if so enabled, the time offset is
842
	 * updated. We can tolerate a modest loss of data here without
843
	 * much degrading time accuracy.
844
	 */
845
	if (u_nsec > (pps_jitter << PPS_POPCORN)) {
846
		time_status |= STA_PPSJITTER;
847
		pps_jitcnt++;
848
	} else if (time_status & STA_PPSTIME) {
849
		time_monitor = -v_nsec;
850
		L_LINT(time_offset, time_monitor);
851
	}
852
	pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
853
	u_sec = pps_tf[0].tv_sec - pps_lastsec;
854
	if (u_sec < (1 << pps_shift))
855
		return;
856
 
857
	/*
858
	 * At the end of the calibration interval the difference between
859
	 * the first and last counter values becomes the scaled
860
	 * frequency. It will later be divided by the length of the
861
	 * interval to determine the frequency update. If the frequency
862
	 * exceeds a sanity threshold, or if the actual calibration
863
	 * interval is not equal to the expected length, the data are
864
	 * discarded. We can tolerate a modest loss of data here without
865
	 * much degrading frequency accuracy.
866
	 */
867
	pps_calcnt++;
868
	v_nsec = -pps_fcount;
869
	pps_lastsec = pps_tf[0].tv_sec;
870
	pps_fcount = 0;
871
	u_nsec = MAXFREQ << pps_shift;
872
	if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
873
	    pps_shift)) {
874
		time_status |= STA_PPSERROR;
875
		pps_errcnt++;
876
		return;
877
	}
878
 
879
	/*
880
	 * Here the raw frequency offset and wander (stability) is
881
	 * calculated. If the wander is less than the wander threshold
882
	 * for four consecutive averaging intervals, the interval is
883
	 * doubled; if it is greater than the threshold for four
884
	 * consecutive intervals, the interval is halved. The scaled
885
	 * frequency offset is converted to frequency offset. The
886
	 * stability metric is calculated as the average of recent
887
	 * frequency changes, but is used only for performance
888
	 * monitoring.
889
	 */
890
	L_LINT(ftemp, v_nsec);
891
	L_RSHIFT(ftemp, pps_shift);
892
	L_SUB(ftemp, pps_freq);
893
	u_nsec = L_GINT(ftemp);
894
	if (u_nsec > PPS_MAXWANDER) {
895
		L_LINT(ftemp, PPS_MAXWANDER);
896
		pps_intcnt--;
897
		time_status |= STA_PPSWANDER;
898
		pps_stbcnt++;
899
	} else if (u_nsec < -PPS_MAXWANDER) {
900
		L_LINT(ftemp, -PPS_MAXWANDER);
901
		pps_intcnt--;
902
		time_status |= STA_PPSWANDER;
903
		pps_stbcnt++;
904
	} else {
905
		pps_intcnt++;
906
	}
907
	if (pps_intcnt >= 4) {
908
		pps_intcnt = 4;
909
		if (pps_shift < pps_shiftmax) {
910
			pps_shift++;
911
			pps_intcnt = 0;
912
		}
913
	} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
914
		pps_intcnt = -4;
915
		if (pps_shift > PPS_FAVG) {
916
			pps_shift--;
917
			pps_intcnt = 0;
918
		}
919
	}
920
	if (u_nsec < 0)
921
		u_nsec = -u_nsec;
922
	pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
923
 
924
	/*
925
	 * The PPS frequency is recalculated and clamped to the maximum
926
	 * MAXFREQ. If enabled, the system clock frequency is updated as
927
	 * well.
928
	 */
929
	L_ADD(pps_freq, ftemp);
930
	u_nsec = L_GINT(pps_freq);
931
	if (u_nsec > MAXFREQ)
932
		L_LINT(pps_freq, MAXFREQ);
933
	else if (u_nsec < -MAXFREQ)
934
		L_LINT(pps_freq, -MAXFREQ);
935
	if (time_status & STA_PPSFREQ)
936
		time_freq = pps_freq;
937
}
938
#endif /* PPS_SYNC */
939
 
940
#ifndef _SYS_SYSPROTO_H_
941
struct adjtime_args {
942
	struct timeval *delta;
943
	struct timeval *olddelta;
944
};
945
#endif
946
/*
947
 * MPSAFE
948
 */
949
/* ARGSUSED */
950
int
951
adjtime(struct thread *td, struct adjtime_args *uap)
952
{
953
	struct timeval delta, olddelta, *deltap;
954
	int error;
955
 
956
	if (uap->delta) {
957
		error = copyin(uap->delta, &delta, sizeof(delta));
958
		if (error)
959
			return (error);
960
		deltap = &delta;
961
	} else
962
		deltap = NULL;
963
	error = kern_adjtime(td, deltap, &olddelta);
964
	if (uap->olddelta && error == 0)
965
		error = copyout(&olddelta, uap->olddelta, sizeof(olddelta));
966
	return (error);
967
}
968
 
969
int
970
kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta)
971
{
972
	struct timeval atv;
973
	int error = 0;
974
 
975
#ifdef MAC
976
	error = mac_check_system_settime(td->td_ucred);
977
	if (error)
978
		return (error);
979
#endif
980
	if (!cf_jailadjtime && jailed(td->td_ucred))
981
		return (EPERM);
982
	if (!cf_useradjtime && (error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL)) != 0)
983
		return (error);                          /* jail is already checked */
984
 
985
	mtx_lock(&Giant);
986
	if (olddelta) {
987
		atv.tv_sec = time_adjtime / 1000000;
988
		atv.tv_usec = time_adjtime % 1000000;
989
		if (atv.tv_usec < 0) {
990
			atv.tv_usec += 1000000;
991
			atv.tv_sec--;
992
		}
993
		*olddelta = atv;
994
	}
995
	if (delta)
996
		time_adjtime = (int64_t)delta->tv_sec * 1000000 +
997
		    delta->tv_usec;
998
	mtx_unlock(&Giant);
999
	return (error);
1000
}
1001