Subversion Repositories general

Rev

Blame | Last modification | View Log | RSS feed

/*-
 * Copyright (c) 1982, 1986, 1989, 1993
 *      The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *      @(#)kern_time.c 8.1 (Berkeley) 6/10/93
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/kern/kern_time.c,v 1.116 2005/03/31 22:51:18 jhb Exp $");

#include "opt_mac.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysproto.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/mac.h>
#include <sys/syscallsubr.h>
#include <sys/sysctl.h>
#include <sys/sysent.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/vnode.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>

int tz_minuteswest;
int tz_dsttime;

/*
 * Time of day and interval timer support.
 *
 * These routines provide the kernel entry points to get and set
 * the time-of-day and per-process interval timers.  Subroutines
 * here provide support for adding and subtracting timeval structures
 * and decrementing interval timers, optionally reloading the interval
 * timers when they expire.
 */

static int      settime(struct thread *, struct timeval *);
static void     timevalfix(struct timeval *);
static void     no_lease_updatetime(int);

static int cf_usersettime;
static int cf_jailsettime;
SYSCTL_INT(_kern, OID_AUTO, usersettime, CTLFLAG_RW, &cf_usersettime, 0,
    "Non-root is allowed to change system time");
SYSCTL_INT(_kern, OID_AUTO, jailsettime, CTLFLAG_RW, &cf_jailsettime, 0,
    "System time is allowed to be changed from jail");

static void 
no_lease_updatetime(deltat)
        int deltat;
{
}

void (*lease_updatetime)(int)  = no_lease_updatetime;

static int
settime(struct thread *td, struct timeval *tv)
{
        struct timeval delta, tv1, tv2;
        static struct timeval maxtime, laststep;
        struct timespec ts;
        int s;

        s = splclock();
        microtime(&tv1);
        delta = *tv;
        timevalsub(&delta, &tv1);

        /*
         * If the system is secure, we do not allow the time to be 
         * set to a value earlier than 1 second less than the highest
         * time we have yet seen. The worst a miscreant can do in
         * this circumstance is "freeze" time. He couldn't go
         * back to the past.
         *
         * We similarly do not allow the clock to be stepped more
         * than one second, nor more than once per second. This allows
         * a miscreant to make the clock march double-time, but no worse.
         */
        if (securelevel_gt(td->td_ucred, 1) != 0) {
                if (delta.tv_sec < 0 || delta.tv_usec < 0) {
                        /*
                         * Update maxtime to latest time we've seen.
                         */
                        if (tv1.tv_sec > maxtime.tv_sec)
                                maxtime = tv1;
                        tv2 = *tv;
                        timevalsub(&tv2, &maxtime);
                        if (tv2.tv_sec < -1) {
                                tv->tv_sec = maxtime.tv_sec - 1;
                                printf("Time adjustment clamped to -1 second\n");
                        }
                } else {
                        if (tv1.tv_sec == laststep.tv_sec) {
                                splx(s);
                                return (EPERM);
                        }
                        if (delta.tv_sec > 1) {
                                tv->tv_sec = tv1.tv_sec + 1;
                                printf("Time adjustment clamped to +1 second\n");
                        }
                        laststep = *tv;
                }
        }

        ts.tv_sec = tv->tv_sec;
        ts.tv_nsec = tv->tv_usec * 1000;
        mtx_lock(&Giant);
        tc_setclock(&ts);
        (void) splsoftclock();
        lease_updatetime(delta.tv_sec);
        splx(s);
        resettodr();
        mtx_unlock(&Giant);
        return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_gettime_args {
        clockid_t clock_id;
        struct  timespec *tp;
};
#endif

/*
 * MPSAFE
 */
/* ARGSUSED */
int
clock_gettime(struct thread *td, struct clock_gettime_args *uap)
{
        struct timespec ats;
        struct timeval sys, user;
        struct proc *p;

        p = td->td_proc;
        switch (uap->clock_id) {
        case CLOCK_REALTIME:
                nanotime(&ats);
                break;
        case CLOCK_VIRTUAL:
                PROC_LOCK(p);
                calcru(p, &user, &sys);
                PROC_UNLOCK(p);
                TIMEVAL_TO_TIMESPEC(&user, &ats);
                break;
        case CLOCK_PROF:
                PROC_LOCK(p);
                calcru(p, &user, &sys);
                PROC_UNLOCK(p);
                timevaladd(&user, &sys);
                TIMEVAL_TO_TIMESPEC(&user, &ats);
                break;
        case CLOCK_MONOTONIC:
                nanouptime(&ats);
                break;
        default:
                return (EINVAL);
        }
        return (copyout(&ats, uap->tp, sizeof(ats)));
}

#ifndef _SYS_SYSPROTO_H_
struct clock_settime_args {
        clockid_t clock_id;
        const struct    timespec *tp;
};
#endif

/*
 * MPSAFE
 */
/* ARGSUSED */
int
clock_settime(struct thread *td, struct clock_settime_args *uap)
{
        struct timeval atv;
        struct timespec ats;
        int error;

#ifdef MAC
        error = mac_check_system_settime(td->td_ucred);
        if (error)
                return (error);
#endif
        if (!cf_jailsettime && jailed(td->td_ucred))
                return (EPERM);
        if (!cf_usersettime && (error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL)) != 0)
                return (error);                          /* jail is already checked */

        if (uap->clock_id != CLOCK_REALTIME)
                return (EINVAL);
        if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
                return (error);
        if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
                return (EINVAL);
        /* XXX Don't convert nsec->usec and back */
        TIMESPEC_TO_TIMEVAL(&atv, &ats);
        error = settime(td, &atv);
        return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_getres_args {
        clockid_t clock_id;
        struct  timespec *tp;
};
#endif

int
clock_getres(struct thread *td, struct clock_getres_args *uap)
{
        struct timespec ts;

        ts.tv_sec = 0;
        switch (uap->clock_id) {
        case CLOCK_REALTIME:
        case CLOCK_MONOTONIC:
                /*
                 * Round up the result of the division cheaply by adding 1.
                 * Rounding up is especially important if rounding down
                 * would give 0.  Perfect rounding is unimportant.
                 */
                ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
                break;
        case CLOCK_VIRTUAL:
        case CLOCK_PROF:
                /* Accurately round up here because we can do so cheaply. */
                ts.tv_nsec = (1000000000 + hz - 1) / hz;
                break;
        default:
                return (EINVAL);
        }
        if (uap->tp == NULL)
                return (0);
        return (copyout(&ts, uap->tp, sizeof(ts)));
}

static int nanowait;

int
kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
{
        struct timespec ts, ts2, ts3;
        struct timeval tv;
        int error;

        if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
                return (EINVAL);
        if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
                return (0);
        getnanouptime(&ts);
        timespecadd(&ts, rqt);
        TIMESPEC_TO_TIMEVAL(&tv, rqt);
        for (;;) {
                error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
                    tvtohz(&tv));
                getnanouptime(&ts2);
                if (error != EWOULDBLOCK) {
                        if (error == ERESTART)
                                error = EINTR;
                        if (rmt != NULL) {
                                timespecsub(&ts, &ts2);
                                if (ts.tv_sec < 0)
                                        timespecclear(&ts);
                                *rmt = ts;
                        }
                        return (error);
                }
                if (timespeccmp(&ts2, &ts, >=))
                        return (0);
                ts3 = ts;
                timespecsub(&ts3, &ts2);
                TIMESPEC_TO_TIMEVAL(&tv, &ts3);
        }
}

#ifndef _SYS_SYSPROTO_H_
struct nanosleep_args {
        struct  timespec *rqtp;
        struct  timespec *rmtp;
};
#endif

/* 
 * MPSAFE
 */
/* ARGSUSED */
int
nanosleep(struct thread *td, struct nanosleep_args *uap)
{
        struct timespec rmt, rqt;
        int error;

        error = copyin(uap->rqtp, &rqt, sizeof(rqt));
        if (error)
                return (error);

        if (uap->rmtp &&
            !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
                        return (EFAULT);
        error = kern_nanosleep(td, &rqt, &rmt);
        if (error && uap->rmtp) {
                int error2;

                error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
                if (error2)
                        error = error2;
        }
        return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct gettimeofday_args {
        struct  timeval *tp;
        struct  timezone *tzp;
};
#endif
/*
 * MPSAFE
 */
/* ARGSUSED */
int
gettimeofday(struct thread *td, struct gettimeofday_args *uap)
{
        struct timeval atv;
        struct timezone rtz;
        int error = 0;

        if (uap->tp) {
                microtime(&atv);
                error = copyout(&atv, uap->tp, sizeof (atv));
        }
        if (error == 0 && uap->tzp != NULL) {
                rtz.tz_minuteswest = tz_minuteswest;
                rtz.tz_dsttime = tz_dsttime;
                error = copyout(&rtz, uap->tzp, sizeof (rtz));
        }
        return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct settimeofday_args {
        struct  timeval *tv;
        struct  timezone *tzp;
};
#endif
/*
 * MPSAFE
 */
/* ARGSUSED */
int
settimeofday(struct thread *td, struct settimeofday_args *uap)
{
        struct timeval atv, *tvp;
        struct timezone atz, *tzp;
        int error;

        if (uap->tv) {
                error = copyin(uap->tv, &atv, sizeof(atv));
                if (error)
                        return (error);
                tvp = &atv;
        } else
                tvp = NULL;
        if (uap->tzp) {
                error = copyin(uap->tzp, &atz, sizeof(atz));
                if (error)
                        return (error);
                tzp = &atz;
        } else
                tzp = NULL;
        return (kern_settimeofday(td, tvp, tzp));
}

int
kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
{
        int error = 0;

#ifdef MAC
        error = mac_check_system_settime(td->td_ucred);
        if (error)
                return (error);
#endif
        if (!cf_jailsettime && jailed(td->td_ucred))
                return (EPERM);
        if (!cf_usersettime && (error = suser_cred(td->td_ucred, SUSER_ALLOWJAIL)) != 0)
                return (error);                         /* jail is already checked */

        /* Verify all parameters before changing time. */
        if (tv) {
                if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
                        return (EINVAL);
                error = settime(td, tv);
        }
        if (tzp && error == 0) {
                tz_minuteswest = tzp->tz_minuteswest;
                tz_dsttime = tzp->tz_dsttime;
        }
        return (error);
}

/*
 * Get value of an interval timer.  The process virtual and
 * profiling virtual time timers are kept in the p_stats area, since
 * they can be swapped out.  These are kept internally in the
 * way they are specified externally: in time until they expire.
 *
 * The real time interval timer is kept in the process table slot
 * for the process, and its value (it_value) is kept as an
 * absolute time rather than as a delta, so that it is easy to keep
 * periodic real-time signals from drifting.
 *
 * Virtual time timers are processed in the hardclock() routine of
 * kern_clock.c.  The real time timer is processed by a timeout
 * routine, called from the softclock() routine.  Since a callout
 * may be delayed in real time due to interrupt processing in the system,
 * it is possible for the real time timeout routine (realitexpire, given below),
 * to be delayed in real time past when it is supposed to occur.  It
 * does not suffice, therefore, to reload the real timer .it_value from the
 * real time timers .it_interval.  Rather, we compute the next time in
 * absolute time the timer should go off.
 */
#ifndef _SYS_SYSPROTO_H_
struct getitimer_args {
        u_int   which;
        struct  itimerval *itv;
};
#endif
/*
 * MPSAFE
 */
int
getitimer(struct thread *td, struct getitimer_args *uap)
{
        struct itimerval aitv;
        int error;

        error = kern_getitimer(td, uap->which, &aitv);
        if (error != 0)
                return (error);
        return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
}

int
kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
{
        struct proc *p = td->td_proc;
        struct timeval ctv;

        if (which > ITIMER_PROF)
                return (EINVAL);

        if (which == ITIMER_REAL) {
                /*
                 * Convert from absolute to relative time in .it_value
                 * part of real time timer.  If time for real time timer
                 * has passed return 0, else return difference between
                 * current time and time for the timer to go off.
                 */
                PROC_LOCK(p);
                *aitv = p->p_realtimer;
                PROC_UNLOCK(p);
                if (timevalisset(&aitv->it_value)) {
                        getmicrouptime(&ctv);
                        if (timevalcmp(&aitv->it_value, &ctv, <))
                                timevalclear(&aitv->it_value);
                        else
                                timevalsub(&aitv->it_value, &ctv);
                }
        } else {
                mtx_lock_spin(&sched_lock);
                *aitv = p->p_stats->p_timer[which];
                mtx_unlock_spin(&sched_lock);
        }
        return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct setitimer_args {
        u_int   which;
        struct  itimerval *itv, *oitv;
};
#endif

/*
 * MPSAFE
 */
int
setitimer(struct thread *td, struct setitimer_args *uap)
{
        struct itimerval aitv, oitv;
        int error;

        if (uap->itv == NULL) {
                uap->itv = uap->oitv;
                return (getitimer(td, (struct getitimer_args *)uap));
        }

        if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
                return (error);
        error = kern_setitimer(td, uap->which, &aitv, &oitv);
        if (error != 0 || uap->oitv == NULL)
                return (error);
        return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
}

int
kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
    struct itimerval *oitv)
{
        struct proc *p = td->td_proc;
        struct timeval ctv;

        if (aitv == NULL)
                return (kern_getitimer(td, which, oitv));

        if (which > ITIMER_PROF)
                return (EINVAL);
        if (itimerfix(&aitv->it_value))
                return (EINVAL);
        if (!timevalisset(&aitv->it_value))
                timevalclear(&aitv->it_interval);
        else if (itimerfix(&aitv->it_interval))
                return (EINVAL);

        if (which == ITIMER_REAL) {
                PROC_LOCK(p);
                if (timevalisset(&p->p_realtimer.it_value))
                        callout_stop(&p->p_itcallout);
                getmicrouptime(&ctv);
                if (timevalisset(&aitv->it_value)) {
                        callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
                            realitexpire, p);
                        timevaladd(&aitv->it_value, &ctv);
                }
                *oitv = p->p_realtimer;
                p->p_realtimer = *aitv;
                PROC_UNLOCK(p);
                if (timevalisset(&oitv->it_value)) {
                        if (timevalcmp(&oitv->it_value, &ctv, <))
                                timevalclear(&oitv->it_value);
                        else
                                timevalsub(&oitv->it_value, &ctv);
                }
        } else {
                mtx_lock_spin(&sched_lock);
                *oitv = p->p_stats->p_timer[which];
                p->p_stats->p_timer[which] = *aitv;
                mtx_unlock_spin(&sched_lock);
        }
        return (0);
}

/*
 * Real interval timer expired:
 * send process whose timer expired an alarm signal.
 * If time is not set up to reload, then just return.
 * Else compute next time timer should go off which is > current time.
 * This is where delay in processing this timeout causes multiple
 * SIGALRM calls to be compressed into one.
 * tvtohz() always adds 1 to allow for the time until the next clock
 * interrupt being strictly less than 1 clock tick, but we don't want
 * that here since we want to appear to be in sync with the clock
 * interrupt even when we're delayed.
 */
void
realitexpire(void *arg)
{
        struct proc *p;
        struct timeval ctv, ntv;

        p = (struct proc *)arg;
        PROC_LOCK(p);
        psignal(p, SIGALRM);
        if (!timevalisset(&p->p_realtimer.it_interval)) {
                timevalclear(&p->p_realtimer.it_value);
                if (p->p_flag & P_WEXIT)
                        wakeup(&p->p_itcallout);
                PROC_UNLOCK(p);
                return;
        }
        for (;;) {
                timevaladd(&p->p_realtimer.it_value,
                    &p->p_realtimer.it_interval);
                getmicrouptime(&ctv);
                if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
                        ntv = p->p_realtimer.it_value;
                        timevalsub(&ntv, &ctv);
                        callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
                            realitexpire, p);
                        PROC_UNLOCK(p);
                        return;
                }
        }
        /*NOTREACHED*/
}

/*
 * Check that a proposed value to load into the .it_value or
 * .it_interval part of an interval timer is acceptable, and
 * fix it to have at least minimal value (i.e. if it is less
 * than the resolution of the clock, round it up.)
 */
int
itimerfix(struct timeval *tv)
{

        if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
            tv->tv_usec < 0 || tv->tv_usec >= 1000000)
                return (EINVAL);
        if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
                tv->tv_usec = tick;
        return (0);
}

/*
 * Decrement an interval timer by a specified number
 * of microseconds, which must be less than a second,
 * i.e. < 1000000.  If the timer expires, then reload
 * it.  In this case, carry over (usec - old value) to
 * reduce the value reloaded into the timer so that
 * the timer does not drift.  This routine assumes
 * that it is called in a context where the timers
 * on which it is operating cannot change in value.
 */
int
itimerdecr(struct itimerval *itp, int usec)
{

        if (itp->it_value.tv_usec < usec) {
                if (itp->it_value.tv_sec == 0) {
                        /* expired, and already in next interval */
                        usec -= itp->it_value.tv_usec;
                        goto expire;
                }
                itp->it_value.tv_usec += 1000000;
                itp->it_value.tv_sec--;
        }
        itp->it_value.tv_usec -= usec;
        usec = 0;
        if (timevalisset(&itp->it_value))
                return (1);
        /* expired, exactly at end of interval */
expire:
        if (timevalisset(&itp->it_interval)) {
                itp->it_value = itp->it_interval;
                itp->it_value.tv_usec -= usec;
                if (itp->it_value.tv_usec < 0) {
                        itp->it_value.tv_usec += 1000000;
                        itp->it_value.tv_sec--;
                }
        } else
                itp->it_value.tv_usec = 0;              /* sec is already 0 */
        return (0);
}

/*
 * Add and subtract routines for timevals.
 * N.B.: subtract routine doesn't deal with
 * results which are before the beginning,
 * it just gets very confused in this case.
 * Caveat emptor.
 */
void
timevaladd(struct timeval *t1, const struct timeval *t2)
{

        t1->tv_sec += t2->tv_sec;
        t1->tv_usec += t2->tv_usec;
        timevalfix(t1);
}

void
timevalsub(struct timeval *t1, const struct timeval *t2)
{

        t1->tv_sec -= t2->tv_sec;
        t1->tv_usec -= t2->tv_usec;
        timevalfix(t1);
}

static void
timevalfix(struct timeval *t1)
{

        if (t1->tv_usec < 0) {
                t1->tv_sec--;
                t1->tv_usec += 1000000;
        }
        if (t1->tv_usec >= 1000000) {
                t1->tv_sec++;
                t1->tv_usec -= 1000000;
        }
}

/*
 * ratecheck(): simple time-based rate-limit checking.
 */
int
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
{
        struct timeval tv, delta;
        int rv = 0;

        getmicrouptime(&tv);            /* NB: 10ms precision */
        delta = tv;
        timevalsub(&delta, lasttime);

        /*
         * check for 0,0 is so that the message will be seen at least once,
         * even if interval is huge.
         */
        if (timevalcmp(&delta, mininterval, >=) ||
            (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
                *lasttime = tv;
                rv = 1;
        }

        return (rv);
}

/*
 * ppsratecheck(): packets (or events) per second limitation.
 *
 * Return 0 if the limit is to be enforced (e.g. the caller
 * should drop a packet because of the rate limitation).
 *
 * maxpps of 0 always causes zero to be returned.  maxpps of -1
 * always causes 1 to be returned; this effectively defeats rate
 * limiting.
 *
 * Note that we maintain the struct timeval for compatibility
 * with other bsd systems.  We reuse the storage and just monitor
 * clock ticks for minimal overhead.  
 */
int
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
{
        int now;

        /*
         * Reset the last time and counter if this is the first call
         * or more than a second has passed since the last update of
         * lasttime.
         */
        now = ticks;
        if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
                lasttime->tv_sec = now;
                *curpps = 1;
                return (maxpps != 0);
        } else {
                (*curpps)++;            /* NB: ignore potential overflow */
                return (maxpps < 0 || *curpps < maxpps);
        }
}